
GUIDE Share France, 27-09-2009, Paris

Réunion du Guide DB2 pour z/OS France
Vendredi 27 novembre 2009
Tour Euro Plaza, Paris-La Défense

par Namik Hrle IBM

DB2 9 for z/OS
Hints and Tips for Application Programmers

© Copyright IBM Corporation 2009. All rights reserv ed.
U.S. Government Users Restricted Rights - Use, dupli cation or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS P ROVIDED FOR INFORMATIONAL PURPOSES
ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETE NESS AND ACCURACY OF THE
INFORMATION CONTAINED IN THIS PRESENTATION, IT IS P ROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INF ORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CH ANGE BY IBM WITHOUT NOTICE. IBM
SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OU T OF THE USE OF, OR OTHERWISE
RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENT ATION. NOTHING CONTAINED IN THIS
PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFF ECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICEN SORS), OR ALTERING THE TERMS AND
CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING TH E USE OF IBM PRODUCTS AND/OR
SOFTWARE.

IBM, the IBM logo, ibm.com, DB2 and DB2 for z/OS are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked
on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered
or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

Disclaimer

DB2 9 – A Rich, Features Filled Release

SHRLEVEL(REFERENCE) for REORG
of LOB tablespaces

Online RENAME COLUMN

Online RENAME INDEX

Online CHECK DATA and CHECK LOB

Online REBUILD INDEX

Online ALTER COLUMN DEFAULT

More online REORG by eliminating
BUILD2 phase

Faster REORG by intra-REORG
parallelism

Renaming SCHEMA, VCAT, OWNER,
CREATOR

LOB Locks reduction

Skipping locked rows option

Tape support for BACKUP and
RESTORE SYSTEM utilities

Recovery of individual tablespaces
and indexes from volume-level
backups

Enhanced STOGROUP definition

Conditional restart enhancements

Histogram Statistics collection and
exploitation

WS II OmniFind based text search

DB2 Trace enhancements

WLM-assisted Buffer Pools
management

. . .

Global query optimization

Generalizing sparse index and in-
memory data caching method

Optimization Service Center

Autonomic reoptimization

Logging enhancements

LOBs network flow optimization

Faster operations for variable-length
rows

NOT LOGGED tablespaces

Index on expressions

Universal Tablespaces

Partition-by-growth tablespaces

APPEND option at insert

Autonomic index page split

Different index page sizes

Support for optimistic locking

Faster and more automatic DB2
restart

RLF improvements for remote
application servers such as SAP

Preserving consistency when
recovering individual objects to a prior
point in time

CLONE Table: fast replacement of one
table with another

Index compression

Index key randomization

. . .

DECIMAL FLOAT

BIGINT

VARBINARY, BINARY

TRUNCATE TABLE statement

MERGE statement

FETCH CONTINUE

ORDER BY and FETCH FIRST n ROWS
in sub-select and full-select

ORDER OF extension to ORDER BY

INTERSECT and EXCEPT Set
Operations

Instead of triggers

Various scalar and built-in functions

Cultural sort

LOB File Reference support

XML support in DB2 engine

Enhancements to SQL Stored
Procedures

SELECT FROM
UPDATE/DELETE/MERGE

Enhanced CURRENT SCHEMA

IP V6 support

Unified Debugger

Trusted Context

Database ROLEs

Automatic creation of database
objects

Temporary space consolidation

‘What-If’ Indexes

. . .

Continuous OperationsTCO Reduction Performance Scalability SQL Portability

SELECT FROM UPDATE/DELETE/MERGE

• Identity columns
• Sequence values
• User-defined defaults
• Expressions
• Columns modified by BEFORE
INSERT trigger

• ROWIDs

V8 V9

SELECT FROM INSERT

Retrieves columns values
created by INSERT in a single
SELECT statement including:

SELECT FROM INSERT

UPDATE
DELETE

MERGE

One SQL call to DB2 modifies the
table contents and returns the
resultant changes to the
application program.

E.g. we can now code destructive
read from a table when a SELECT
FROM DELETE statement is
included. This feature is
particularly useful when a table is
used as a data queue.

Avoids possible expensive
access path that separate
SELECT might be using

ORDER BY and FETCH FIRST in Subselect

V8 V9

ORDER BY and FETCH FIRST
can be specified only as part of
select-statement, i.e. one can
write:
SELECT * FROM T1
ORDER BY C1

FETCH FIRST 1 ROW ONLY

but not the following:
INSERT INTO T2
(SELECT * FROM T1
ORDER BY C1
FETCH FIRST 1 ROW ONLY)

The restriction has been removed
– the clauses can be specified in
either a subselect or fullselect.

Interesting example: a loop over
the statement followed by a
commit deletes rows without
acquiring too many locks

DELETE FROM T1 X

WHERE EXISTS

(SELECT * FROM T1 Y
WHERE X.KEY1=Y.KEY1

AND X.KEY2=Y.KEY2

AND delete_predicate
FETCH FIRST 10000

ROWS ONLY

Skipping Locked Rows

New SQL clause: SKIP LOCKED DATA

Applies to:

• select-statements, SELECT INTO,
PREPARE, searched UPDATE, searched
DELETE, UNLOAD utility

• Isolation levels CS or RS

• Row or page level locking

It allows a transaction to skip over rows
that are incompatibly locked by other
transactions, without being blocked.

Application does not scale well
due to increased lock
contention.
&
Application semantics requires
committed and available rows
only.

An example of such an
application is a messaging
system:

• only committed and
available messages can
be processed

• those locked at the time
will be processed later.

An interesting usage scenario is serializing
access to any kind of object:

• Create a table and insert a row for each
object to be controlled

• Code: SELECT … FOR UPDATE OF …
SKIP LOCKED DATA

• The object unavailability is identified by

return code +100 (without any wait)

V8 V9

New Techniques to Retrieve LOBs: FETCH CONTINUE

� Fetch into pre-allocated buffer
� using max size buffer

results in best
performance, but inefficient
storage utilization

� Using smaller buffer results
in truncation which is not
accompanied by the actual
LOB size

� Using LOB locators
� storage efficient but

requires multiple trips to
DB2

FETCH WITH CONTINUE when retrieving base row
followed by
FETCH CURRENT CONTINUE if LOB is truncated

Existing techniques to
retrieve entire LOBs with a
large maximum length are
not optimal New techniques to retrieve LOBs:

1. Fetch into moderately sized buffer,
expected to fit most values. If it does
not:
� Allocate larger buffer using the actual

LOB length returned on the FETCH
� FETCH CURRENT CONTINUE to retrieve

the rest

2. Fetch through a streaming, relatively
small buffer (e.g. 32KB)
� move and reassemble data pieces into a

larger buffer or pipe it to an output file

These techniques apply to XML as well

V8 V9

LOBs Network Flow Optimization

V8 V9
� LOBs retrieval optimized for large

amounts of data in which case LOB
locators usage is the most efficient
technique.

� However, for smaller LOBs, returning the
LOB value directly is more efficient.

� Therefore, the applications use different
techniques depending on the actual LOB
size. E.g. in Java via JCC property
settings:

� materialized LOB
fullyMaterializeLobData=true (default)

� usage of LOB locator
fullyMaterializeLobData=false

� Locators remain active for the scope of
the transaction (unless explicitly freed)
and valuable server resources are longer
held.

Progressive streaming for LOB/XML

Behavior depends on LOB/XML size:

– size < 32KB, data is in-lined (like
varchar)

– 32k < size < 1MB, data is chained to the
query result

– size > 1MB, LOB locator is returned

For Java, activated by:

– Setting connection property
progressiveStreaming=ON

– Using either:
• LOB streaming interface, or

• LOB object interface

For CLI, activated by using streaming
interface SQLGetData

Requires DB2 Connect 9.1 FP 1, better yet
9.5

New Data Types: BINARY and VARBINARY

BINARY fixed-length binary string
– 1 to 255 bytes

VARBINARY variable-length binary string
– 1 to 32704 bytes; maximum length determined by the maximum record

size associated with the table

Unlike FOR BIT DATA the new BINARY and VARBINARY use x’00’
as a padding character

Comparison rule:

– If two strings are equal up to the length of the shorter string , the shorter
string is considered less than the longer string.

New Data Type: DECFLOAT

• 1.2 in a 32-bit binary float is
actually
1.2000000476837158203125

• … and this squared is
1.440000057220458984375

V8 V9

Binary fractions cannot exactly
represent most decimal
fractions (e.g. 0.1 requires an
infinitely long binary fraction)

So, is 1.2 x 1.2 = 1.44?
1.2 in a 32-bit binary float

New DECFLOAT data type is well
suited to typical customer financial
calculations, similar to “calculator”
mathematics.

Eliminates rounding errors by using
base 10 math and provides floating
point convenience with fixed point
precision.

Has up to 34 digits of precision

DECFLOAT(16)
10+384 to 10-383 positive & negative

DECFLOAT(32)
10+6144 to 10-6143 positive & negative

New Data Type: BIGINT

V8 V9

BIGINT (big integer) is not
supported as a native data
type

Simulated by DECIMAL(19,0)

� BIGINT is newly supported data type
and function

� Like SMALLINT and INTEGER, this is
an exact numeric type

� 63-bit precision
• From - 9223372036854775808
• To + 9223372036854775807

� Compatible with all numeric data types

� The BIGINT function returns a big
integer representation of a number or
a string representation of a number

APPEND

V8 V9

• The APPEND YES results in a fast
insert at the end of the table or
appropriate partition at the expense of
data organization and rapid table
space growth.

• After populating with the APPEND
option in effect, clustering can be
achieved by running the REORG utility
providing a clustering index has been
explicitly defined.

• Make sure PK81471 is applied

• Note that MC00 is still valid, but make
sure that PK81470 is applied

CREATE TABLE … APPEND YES | NO

ALTER TABLE … APPEND YES | NO• Critical, high insert rate workload
needs better performance and all
the conventional tuning steps
have already been applied.

• Clustering is either not beneficial
or more frequent reorganizations
are acceptable

• MC00 insert algorithm is still not
fast enough or the prerequisites
cannot be satisfied:

� MEMBER CLUSTER
� FREEPAGE=PCTFREE=0

All of the following applies:

Virtual Indexes a.k.a. ‘What If’ Indexes

V8 V9

• Virtual i.e. hypothetical indexes can be
specified and made visible to statement
EXPLAIN STATEMENT FOR

• Table DSN_VIRTUAL_INDEXES is used to
specify virtual indexes

• Table columns include selected columns
from SYSINDEXES and SYSKEYS

• Users need to create the table manually,
unless tooling such as Index Advisor does it
automatically. Appropriate script is provided.

• To create/drop an index, the table needs to
be populated with a row that provide an
appropriate description of index

• At EXPLAIN time, during query optimization,
the virtual indexes compete with regular
indexes on the tables in a cost-based
fashion and the dropped indexes are not
considered

• In many cases predicting based on
modeling is not reliable due to query
complexity

• Indiscriminate adding of indexes
creates permanent overhead for
most operations (SQL and utilities)

• Creating a new index is obtrusive for
concurrent operations

• Using a test system for
experimenting lacks potentially
crucial environmental factors that
affect access path selection

How to determine that a new index
would benefit a given dynamic SQL
query?

How to determine that dropping an index
will not negatively affect a given query?

Ordering ('A' or 'D') of the last column in the index key.ORDERING64

Column # of the last column in the index key. Needs to be populated only when # index keys = 64COLNO64

......

Ordering ('A' or 'D') of the first column in the index keyORDERING1

Column # of the first column in the index keyCOLNO1

Indicates whether keys within the index are padded for varying-length column data ('Y' or 'N')PADDED

Clustering ratio. . If unknown, the value must be -1.CLUSTERRATIOF

Number of distinct values of the key. If unknown, the value must be -1.FULLKEYCARDF

Number of distinct values of the first key column. If unknown, the value must be -1.FIRSTKEYCARDF

Size, in bytes, of the leaf pages in the index: 4K, 8K, 16K, 32KPGSIZE

The index type: '2' - NPSI; 'D' - DPSIINDEXTYPE

Number of levels in the index tree. If unknown, the value must be -1.NLEVELS

Number of active leaf pages in the index. If unknown, the value must be -1.NLEAF

Whether the index is clustered ('Y' or 'N')CLUSTERING

The number of columns in the keyCOLCOUNT

Whether the index is unique: D for No (duplicates are allowed); U for YesUNIQUERULE

Whether the index is being created ('C') or dropped ('D')MODE

Whether this index specification will be processed ('Y') or not ('N').ENABLE

Name of the indexIXNAME

Authorization ID (or schema in V9) of the owner of the indexIXCREATOR

Name of the table on which the index is being created or droppedTBNAME

Authorization ID of owner (or schema in V9) of table on which the index is being created/droppedTBCREATOR

D
S

N
_V

IR
T

U
A

L_IN
D

E
X

E
S

 T
able

TRUNCATE TABLE

• DELETE without WHERE
clause is not fast enough as
the table includes delete
triggers

• Using LOAD REPLACE with
empty input data set (even
when called via DSNUTILS) is
not DBMS agnostic

• Storage occupied by deleted
rows should be released
faster

New DML statement:

TRUNCATE table
DROP | REUSE STORAGE
IGNORE | RESTRICT DELETE TRIGGERS
IMMEDIATE

Alternative way of deleting the
entire table is needed for any
of these reasons:

Under the cover it’s DELETE
without WHERE clause, but
without delete triggers processing
overhead.
Therefore it is fast for tables in
segmented and universal
tablespaces for which there are no
CDC, MLS and VALIDPROC enabled
attributes.

V8 V9

MERGE Statement

V8

For a set of input rows update the target table when the key exists
and insert the rows for which keys do not exist.
E.g.

• For activities whose description has been changed, update the
description in table archive.

• For new activities, insert into archive.

Prior to V9 this has been coded as a loop over conditional INSERT
and UPDATE statements

MERGE INTO archive AR
USING VALUES (:hv_activity, :hv_description) FOR :hv_nrows ROWS
AS AC (ACTIVITY, DESCRIPTION)

ON (AR.ACTIVITY = AC.ACTIVITY)
WHEN MATCHED THEN UPDATE SET DESCRIPTION = AC.DESCRIPTION
WHEN NOT MATCHED THEN INSERT (ACTIVITY, DESCRIPTION)

VALUES (AC.ACTIVITY, AC.DESCRIPTION)
NOT ATOMIC CONTINUE ON SQLEXCEPTION

V9

MERGE Example

account AS T

MERGE INTO account AS T
USING VALUES (:hv_id, :hv_amt) FOR 5 ROWS AS S (id, amt)
ON T.id = S.id
WHEN MATCHED THEN UPDATE SET balance = T.balance + S.amt
WHEN NOT MATCHED THEN INSERT (id, balance) VALUES (S.id, S.amt)
NOT ATOMIC CONTINUE ON SQLEXCEPTION

501

205

4010

105

301

amtid

100315

4000500

300300

600200

50010

10001

balanceid

305

100315

4000500

300300

600200

54010

10801

balanceid

account AS TVALUES AS S

MERGE

INTERSECT/EXCEPT

subselect

subselectUNION

EXCEPT

INTERSECT

(fullselect) DISTINCT

ALL (fullselect)

UNION

R1 R2

V8

INTERSECT

R1 R2

EXCEPT

R1 R2

V9

INSTEAD OF Triggers

• A new type of trigger (in addition
to BEFORE and AFTER triggers)

• Can only be defined on views
• DB2 only executes the triggered-
action instead of the action
against the subject view
• application still believes all

operations are performed
against the view

• Provides means to update views
that are considered read-only by
DB2

• No unified mechanism for
controlling read and write
access by an application
(e.g. encryption)
• Views are used for read

access control
• Triggers on base table

are used for write access
control

• No INSERT/UPDATE/DELETE
for read-only views (e.g.
joins)

V8 V9

INSTEAD OF TRIGGERS

CREATE TABLE WEATHER (CITY VARCHAR(25), TEMPF DECIMAL(5,2))
CREATE VIEW CELCIUS_WEATHER (CITY, TEMPC) AS

SELECT CITY, (TEMPF-32)*5.00/9.00 FROM WEATHER

CREATE TRIGGER CW_INSERT INSTEAD OF INSERT ON
CELCIUS_WEATHER

REFERENCING NEW AS NEWCW DEFAULTS NULL
FOR EACH ROW MODE DB2SQL

INSERT INTO WEATHER VALUES (NEWCW.CITY, 9.00/5.00*NEWCW.TEMPC+32)

CREATE TRIGGER CW_UPDATE INSTEAD OF UPDATE ON
CELCIUS_WEATHER

REFERENCING NEW AS NEWCW OLD AS OLDCW DEFAULTS NULL
FOR EACH ROW MODE DB2SQL

UPDATE WEATHER AS W
SET W.CITY = NEWCW.CITY,

W.TEMPF = 9.00/5.00*NEWCW.TEMPC+32
WHERE W.CITY = OLDCW.CITY

Support for Optimistic Locking

With optimistic locking the retrieved rows are not protected by locks after
they are retrieved.

That means they can be changed by concurrent transactions after the
retrieval and before they are to be updated by the transaction that
retrieved them in the first place.

In order to ensure consistency, the retrieved rows must be checked if they
changed since they had been retrieved.

Prior to V9 all of the columns marked for update and their values in last
read operation are added explicitly in the WHERE clause of the UPDATE,
so that the UPDATE fails if the underlying column values have been
changed.

V8

Support for Optimistic Locking

V9 adds a new expression: ROW CHANGE TOKEN which returns a token that
represents a relative point in the modification sequence of a row

Instead of knowing all the old values that are to be updated, the application can
compare the current ROW CHANGE TOKEN value of a row with the value that
was stored when the row was last time fetched.

ROW CHANGE TOKEN is generated in two alternative ways:
– From an optional, explicit (but optionally hidden) column

– From the page RBA or LRSN

SELECT C1, ROW CHANGE TOKEN FOR TAB, RID(TAB)
INTO :h1, :h_rct. :h_rid
FROM TAB WHERE TAB.C1 = 10

… some other statements in the application …

UPDATE TAB
SET TAB.C2 = 10
WHERE RID(TAB) = :h_rid AND ROW CHANGE TOKEN FOR TAB = :h_rct

V9

LOB Performance and Concurrency Enhancements

• For UPDATE, INSERT and DELETE LOB
lock avoidance will be attempted. If it
fails, the resulting X-LOB lock will
have manual duration only (unlock
after the operation completion).
Changed LOB data pages and its
index pages are flushed out to the
GBPs prior to the unlock in order to
ensure consistency for UR readers on
other data sharing members.

• For non-UR SELECTs LOB lock will be
no longer acquired

• For UR SELECTs the resulting S-LOB
locks will have autorel mode (lock is
acquired and released immediately)

• LOB locks as means to control space
reuse are no longer used. DB2 relies
on other technique to achieve that.

Very large number of locks
even for UR scanners resulting
in a high IRLM storage usage
or lock escalations

The reason is LOB locks which
are acquired for any data
access operation in order to:

• control LOB space usage
• serialize readers and

updaters of LOB columns

V8 V9

Index on Expression

V9

Indexes on expressions:

CREATE INDEX upper_empname
ON employee
(UPPER (lastname, 'EN_US'),
UPPER (firstname, 'EN_US'))

How to improve performance of
queries that include expressions
such as in the following examples:

SELECT id
FROM employee
WHERE

UPPER (lastname, 'EN_US') = 'JOE'
AND
UPPER (firstname, 'EN_US') = 'JOHN'

SELECT id
FROM employee
WHERE

bonus + salary > 100000

CREATE INDEX total_compensation
ON employee
(salary + bonus)

V8

• Extra cost in Load, Insert, Update on
key value, Rebuild Index, Check
Index, and Reorg Tablespace, but not
Reorg Index

• Not eligible for zIIP offload
• The rules for creating indexes on

expression are more restrictive than
for traditional indexes

Miscellaneous

LOB File Reference support
– A file reference variable allows direct transfer of LOB data between DB2 and the file named in the

variable

The RELCURHL = NO zparm option is removed
– Very unlikely incompatibility possibility for applications dependent on retaining page or row locks

across commits for a WITH HOLD cursor

Faster operations for variable-length rows
– Remember tuning recommendations for rows with variable-length columns?
– New, Reordered Row Format

Index key randomization
Enhanced CURRENT SCHEMA

– Removing the V8 restriction that disallows CREATE statements when the value of CURRENT
SCHEMA was different from the value in CURRENT SQLID

Online ALTER TABLE RENAME COLUMN source-column-name TO target-column-name
– Not allowed if column referenced in a view or has a trigger defined on it

Online RENAME INDEX
Online ALTER TABLE ALTER COLUMN SET DEFAULT
Online ALTER TABLE ALTER COLUMN DROP DEFAULT

– PK56392

Prefix Fixed Length Cols Varchar
Pointers Varying Length Cols

zIIP

Enabled

for DRDA

Native Support for SQL Procedures

Eliminates implicitly generated C code and compilation

Fully integrated into the DB2 engine

– An SQL procedure created without FENCED or EXTERNAL is a native
SQL procedure

Appl pgm

CALL SP1

Appl pgm

CALL SP1

DB2
DBM1

EDM pool

DDF

DB2
directory

SQL PL native logic
SQL
SQL

SP1

SQL PL native logic
SQL
SQL

SP1
DRDA

More Stored Procedures Enhancements

Changing name resolution within a procedure body
Using delimited identifiers, including lowercase characters, for SQL
condition names, SQL labels, SQL variables, and SQL parameters
Full support for nested compound statements including:

– Use a compound statement within the body of a condition handler
– Use nested compound statements to define different scopes for SQL

variables, cursors, condition names, and condition handlers

Versioning and managing source code
– VERSION keyword on CREATE PROCEDURE

– CURRENT ROUTINE VERSION special register

– ALTER ADD VERSION, REPLACE VERSION, ACTIVATE VERSION

– BIND PACKAGE with new DEPLOY keyword
• Allows to deploy from test to production without doing a CREATE PROC statement

Deploying of native SQL procedures to multiple servers

Debugging of native SQL procedures

Seamless Integration of XML and Relational Data

• XML view of relational data
• Shredding and composition

• XML documents as monolithic
entities

• Atomic storage and retrieval
• Basic search capabilities

Two ways of simulating support for
XML data

V8 V9

• XML document storage
• XML as a native data type
• Supported by most SQL

operations
• Decomposition stored

procedure
• XML document retrieval

• SQL for entire documents
• XPath expressions through

SQL/XML for portions of
documents

• Performance benefits through
indexing support

• Application development support
• Java, C/C++, .NET, PHP,

COBOL, PL/1 etc.
• Database administration support

• XML Schema Repository
• DB2 Utilities

No full integration into the
database system

DB2 9 for z/OS RedBooks & RedPapers

� Powering SOA with IBM Data Servers SG24-7259

� LOBs with DB2 for z/OS: SG24-7270

� Securing DB2 & MLS z/OS SG24-6480-01

� DB2 9 Technical Overview SG24-7330

� Enhancing SAP - DB2 9 SG24-7239

� Best practices SAP BI - DB2 9 SG24-6489-01

� DB2 9 Performance Topics SG24-7473

� DB2 9 Optimization Service Center SG24-7421

� Index Compression with DB2 9 for z/OS paper

� DB2 9 Stored Procedures SG24-7604

GUIDE Share France, 27-09-2009, Paris

par Namik Hrle IBM
hrle@de.ibm.com

DB2 9 for z/OS
Hints and Tips for Application Programmers

